Linear and Non-Linear Mixed Models in Longitudinal Studies and Complex Survey Data
نویسندگان
چکیده
Correlated data are fairly common in health and social sciences. For example, clustered data arise when subjects are nested in clusters such as classrooms, hospitals, and neighborhoods; while longitudinal data result from multiple measures for the same subject over long period of time; whereas repeated measures data are involved in multiple measurements for the same subject over time or other dimension. Observations for the same cluster/subject are likely to be correlated (non-independent). Mixed models (also known as multilevel models or hierarchical models) including both fixed effects and random effects have been developed to deal with correlated data [1-3]. The random effect of one variable has a prior distribution with variance and varies randomly within the population; whereas the fixed effect of the variable is the average effect in the entire population, expressed by the regression coefficient.
منابع مشابه
The Relation between Hearing Loss and Smoking among Workers Exposed to Noise, Using Linear Mixed Models
Introduction: Noise is one of the most common and harmful physical factors in the working environment and has physical and psychological effects on individuals. In this study, the audiometry results of industrial workers were modeled and the effect of noise and other factors on hearing loss was examined. Materials and Methods: ...
متن کاملTransition Models for Analyzing Longitudinal Data with Bivariate Mixed Ordinal and Nominal Responses
In many longitudinal studies, nominal and ordinal mixed bivariate responses are measured. In these studies, the aim is to investigate the effects of explanatory variables on these time-related responses. A regression analysis for these types of data must allow for the correlation among responses during the time. To analyze such ordinal-nominal responses, using a proposed weighting approach, an ...
متن کاملConditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016